Course Contents and Lecture Schedule

No	Topic	No. of Lectures
$\mathbf{1}$	Module 1 : Calculus of vector functions (9 hours)	
1.1	Vector valued function of a scalar variable - derivative of vector valued function of scalar variable t-geometrical meaning	2
1.2	Motion along a curve-speed, velocity, acceleration	1
1.3	Gradient and its properties, directional derivative, divergent and curl	3
1.4	Line integrals with respect to arc length, line integrals of vector fields. Work done as line integral	2
1.5	Conservative vector field, independence of path, potential function	1
$\mathbf{2}$	Module 2 : Vector integral theorems(9 hours)	2
2.1	Green's theorem and it's applications	2
2.2	Surface integrals, flux integral and their evaluation	2
2.3	Divergence theorem and applications	2
2.4	Stokes theorem and applications	\begin{tabular}{c\|c
\hline		
\end{tabular}		
3	Module 3 : Ordinary Differential Equations (9 hours)	1
3.1	Homogenous linear equation of second order, Superposition principle, general solution	Homogenous linear ODEs of second order with constant coefficients
3.2	Second order Euler-Cauchy equation	2

3.4	Non homogenous linear differential equations of second order with constant coefficient-solution by undetermined coefficients, variation of parameters.	3
3.5	Higher order equations with constant coefficients	2
4	Module 4 : Laplace Transform (10 hours)	
4.1	Laplace Transform , inverse Transform, Linearity, First shifting theorem, transform of basic functions	2
4.2	Transform of derivatives and integrals	1
4.3	Solution of Differential equations, Initial value problems by Laplace transform method.	2
4.4	Unit step function --- Second shifting theorem	2
4.5	Dirac Delta function and solution of ODE involving Dirac delta function	2
4.6	Convolution and related problems.	1
5	Module 5 : Fourier Transform (8 hours)	
5.1	Fourier integral representation	1
5.2	Fourier Cosine and Sine integrals and transforms	2
5.3	Complex Fourier integral representation, Fourier transform and its inverse transforms, basic properties	3
5.4	Fourier transform of derivatives, Convolution theorem	2

