100908/MA200A VECTOR CALCULUS, DIFFERENTIAL EQUATIONS AND TRANSFORMS

No Topic No. of Lectures Module 1 : Calculus of vector functions (9 hours) 1 1.1 Vector valued function of a scalar variable - derivative of 2 vector valued function of scalar variable t-geometrical meaning 1.2 Motion along a curve-speed, velocity, acceleration 1 1.3 Gradient and its properties, directional derivative, divergent 3 and curl 1.4 Line integrals with respect to arc length, line integrals of 2 vector fields. Work done as line integral 1.5 Conservative vector field, independence of path, potential 1 function 2 Module 2 : Vector integral theorems(9 hours) 2.1 2 Green's theorem and it's applications 2.2 3 Surface integrals, flux integral and their evaluation 2.3 Divergence theorem and applications 2 2.4 Stokes theorem and applications 2 3 **Module 3 : Ordinary Differential Equations (9 hours)** 3.1 Homogenous linear equation of second order, Superposition 1 principle, general solution 3.2 Homogenous linear ODEs of second order with constant 2 coefficients 3.3 Second order Euler-Cauchy equation 1

Course Contents and Lecture Schedule

3.4	Non homogenous linear differential equations of second	3
	order with constant coefficient-solution by undetermined	
	coefficients, variation of parameters.	
3.5	Higher order equations with constant coefficients	2
4	Module 4 : Laplace Transform (10 hours)	
4.1	Laplace Transform , inverse Transform, Linearity, First	2
	shifting theorem, transform of basic functions	
4.2	Transform of derivatives and integrals	1
4.3	Solution of Differential equations, Initial value problems by	2
	Laplace transform method.	
4.4	Unit step function Second shifting theorem	2
4.5	Dirac Delta function and solution of ODE involving Dirac	2
	delta function	
4.6	Convolution and related problems.	1
5	Module 5 : Fourier Transform (8 hours)	
5.1	Fourier integral representation	1
5.2	Fourier Cosine and Sine integrals and transforms	2
5.3	Complex Fourier integral representation, Fourier transform	3
	and its inverse transforms, basic properties	
5.4	Fourier transform of derivatives, Convolution theorem	2